Simultaneous Pell equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Pell equations

Let R and S be positive integers with R < S. We shall call the simultaneous Diophantine equations x −Ry = 1, z − Sy = 1 simultaneous Pell equations in R and S. Each such pair has the trivial solution (1, 0, 1) but some pairs have nontrivial solutions too. For example, if R = 11 and S = 56, then (199, 60, 449) is a solution. Using theorems due to Baker, Davenport, and Waldschmidt, it is possible...

متن کامل

On the resolution of simultaneous Pell equations ∗

We descibe an alternative procedure for solving automatically simultaneous Pell equations with relatively small coefficients. The word “automatically” means to indicate that the algorithm can be implemented in Magma. Numerous famous examples are verified and a new theorem is proved by running simply the corresponding Magma procedure requires only the six coefficients of the system a1x 2 + b1y 2...

متن کامل

Solving Families of Simultaneous Pell Equations

possess at most 3 solutions in positive integers (x, y, z). On the other hand, there are infinite families of distinct integers (a, b) for which the above equations have at least 2 positive solutions. For each such family, we prove that there are precisely 2 solutions, with the possible exceptions of finitely many pairs (a, b). Since these families provide essentially the only pairs (a, b) for ...

متن کامل

On two classes of simultaneous Pell equations with no solutions

In this paper we describe two classes of simultaneous Pell equations of the form x2−dy2 = z2−ey2 = 1 with no solutions in positive integers x, y, z. The proof is elementary and covers the case (d, e) = (8, 5), which was solved by E. Brown using very deep methods.

متن کامل

On the number of solutions of simultaneous Pell equations

It is proven that if a and b are distinct nonzero integers then the simultaneous Diophantine equations x − az = 1, y − bz = 1 possess at most three solutions in positive integers (x, y, z). Since there exist infinite families of pairs (a, b) for which the above equations have at least two solutions, this result is not too far from the truth. If, further, u and v are nonzero integers with av − b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1996

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-96-00687-4